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Abstract

Using LLM-generated labels to fine-tune001
smaller encoder-only models for text classifica-002
tion has gained popularity in various settings.003
While this approach may be justified in simple004
and low-stakes applications, we conduct empir-005
ical analysis to demonstrate how the perennial006
curse of training on synthetic data manifests007
itself in this specific setup. Compared to mod-008
els trained on gold labels, we observe not only009
the expected performance degradation in accu-010
racy and F1 score, but also increased instability011
across training runs and premature performance012
plateaus. These findings cast doubts on the re-013
liability of such approaches in real-world ap-014
plications. We contextualize the observed phe-015
nomena through the lens of error propagation016
and offer several practical mitigation strategies,017
including entropy-based filtering and ensemble018
techniques. Although these heuristics offer par-019
tial relief, they do not fully resolve the inherent020
risks of propagating non-random errors from021
LLM annotations to smaller classifiers, under-022
scoring the need for caution when applying023
this workflow in high-stakes text classification024
tasks.025

1 Introduction026

Text classification remains a crucial application of027

LLMs. In settings where unlabeled data is abun-028

dant but gold labels and computational resources029

are scarce, recent work (e.g., Golde et al. (2023);030

Pangakis and Wolken (2024a); Mohamed Serouis031

and Sèdes (2024)) suggested fine-tuning smaller032

encoder-only language models, such as BERT (De-033

vlin et al., 2019) using LLM-generated labels as034

training samples. This strategy promises to strike035

a balance between performance and cost, and has036

become increasingly popular across commercial,037

academic, and policy applications, some of which038

carry potentially high societal impact. Examples039

range from healthcare (Kumichev et al., 2024;040

Smolyak et al., 2024) to legal analysis (Freitas,041

2024; Colombo et al., 2024), and to policy decision 042

making (Dell, 2024; Halterman and Keith, 2025). 043

However, the reliability of such approaches re- 044

mains under-explored. Previous work often treats 045

LLM-generated labels as adequate approximations 046

of human annotations, focusing narrowly on per- 047

formance parity (Wang et al. (2021); Csanády et al. 048

(2024); Pangakis and Wolken (2024b)). This over- 049

looks risks inherent to synthetic data training, such 050

as error propagation and model collapse—issues 051

well-documented in broader machine learning lit- 052

erature (Bauer et al., 2024; Liu et al., 2024; Shu- 053

mailov et al., 2024a). These gaps are particularly 054

consequential in applied settings like computa- 055

tional social science, where researchers increas- 056

ingly leverage LLM annotations for large text cor- 057

pora despite lacking validation mechanisms (Hop- 058

kins et al.). While prior work has studied synthetic 059

text-label pairs (Kuo et al., 2024; Li et al., 2023), 060

our focus on label generation alone addresses a 061

more common real-world constraint: abundant un- 062

labeled text data paired with expensive annotation 063

processes. 064

We address this gap through experiments on 065

four benchmark datasets of varying complexity, 066

demonstrating that the trade-offs of training with 067

LLM-generated labels extend beyond modest accu- 068

racy/F1 degradation. In summary, our main contri- 069

butions are: 070

1. Empirical Analysis of Synthetic Label 071

Training: We reveal how synthetic labels 072

erode prediction robustness and leads to early 073

performance plateau — dimensions often ig- 074

nored in prior analyses. These phenomena 075

persist across datasets, contradicting assump- 076

tions of "more data always helps." 077

2. Evaluation of Mitigation Strategies: We 078

test entropy-based filtering (removing low- 079

confidence LLM labels) and consistency en- 080

sembles (aggregating multiple LLM annota- 081
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tions), showing they recover only 60–75% of082

the gold-label performance gap. More criti-083

cally, neither strategy stabilizes training vari-084

ance or mitigates early plateaus, underscoring085

fundamental limitations of post hoc correc-086

tions.087

Our findings challenge the premise that synthetic088

labels are a "safe" substitute for human annota-089

tions, even in ostensibly simple classification tasks.090

The paper proceeds as follows: Section 2 details091

baseline experimental protocols, while Section 3092

analyzes performance degradation, instability, and093

performance plateau alongside theoretical interpre-094

tation. Sections 4 and 5 evaluate mitigation strate-095

gies, concluding with implications for practitioners096

relying on LLM-generated training data.097

2 Baseline Experiments098

2.1 Methods099

We compare classifiers fine-tuned on LLM-100

generated labels vs. gold labels across four datasets101

chosen for task diversity and difficulty:102

• IMDB: balanced binary sentiment analysis103

• ECommerce: slightly imbalanced multi-class104

product categorization105

• Manifestos: nuanced political stance detec-106

tion, imbalanced data, smaller training size107

• Toxic: hate speech vs. offensive language de-108

tection on twitter texts, highly imbalanced109

Details about these datasets are in Appendix A.110

Following prior work, we use roberta-base111

with standard classification heads as our encoder-112

only classifiers. For annotation, we use113

Qwen2.5-Instruct (3b, 7b), as representatives114

LLMs in their respective weight classes (Yang et al.,115

2024). Using three-shot prompts, we generate syn-116

thetic labels for training texts while withholding117

gold labels. Fine-tuning details are Appendix B.118

Few shot classification details are in Appendix C.119

2.2 Evaluation Metrics120

Accuracy and Macro-F1. We evaluate the over-121

all performance by looking at accuracy and macro-122

F1. Since we are especially interested in the stabil-123

ity of our classification models, we perform each124

experiment five times and compute the variance of125

accuracy and macro-F1 as well.126

Stability at the Individual Level. In addition to127

variation in overall performances, another impor-128

tant indicator to consider in high-stakes situations129

is prediction stability at the individual level. We 130

measure this using Krippendorff’s Alpha αK which 131

quantifies inter-rater agreement across training run 132

and the proportion of unchanged predictions puc 133

across five trials, providing an intuitive measure of 134

model decisiveness. 135

3 Baseline Results 136

Non-Random Performance Degradation Un- 137

surprising, models trained on synthetic labels con- 138

sistently underperform those trained on gold la- 139

bels across all datasets, with the performance gap 140

widening as task complexity increases. On IMDB, 141

a simple benchmark first introduced in 2011, the 142

performance difference is negligible. However, for 143

multi-class classification on Ecommerce , models 144

trained on labels from the 3B parameter LLM suf- 145

fer a dramatic 30-point accuracy drop (66.05% ver- 146

sus 96.26% with gold labels). Notably, scaling up 147

to a 7B parameter model fails to bridge this gap, 148

achieving only 92.74% accuracy. The discrepancy 149

between accuracy and F1 scores on the Manifestos 150

and Toxic datasets reveals a more nuanced issue: 151

LLM-generated labels lead to systematic failures in 152

modeling tail distributions. Through manual error 153

analysis, we found that both the LLM annotator 154

and subsequently trained RoBERTa classifier con- 155

sistently underperform on minority classes. This 156

phenomenon can be interpreted as a mild form of 157

model collapse during synthetic data training, as 158

described by (Shumailov et al., 2024b), where the 159

model fails to adequately learn tail distributions. 160

Performance Plateau As Figures 1 and 2 shows, 161

models trained on synthetic labels exhibit pre- 162

mature performance plateaus compared to those 163

trained on gold labels, showing diminishing returns 164

as training data increases. The observed plateaus 165

can be attributed to the propagation of systematic 166

errors present in LLM annotations, as documented 167

by (Chen et al., 2022) in few-shot learning contexts, 168

as well as by (Li et al., 2023)’s findings regarding 169

LLMs’ difficulties with subjective classification 170

tasks. 171

Prediction Instability Does Not Decrease with 172

LLM Size Perhaps the most concerning finding 173

is that models trained on synthetic labels exhibit 174

significant prediction instability, and this instabil- 175

ity persists even when using larger LLMs for label 176

generation. On the Manifestos dataset, we observe 177

a dramatic drop in Krippendorff’s alpha (αK) from 178
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Figure 1: Performance of RoBERTa trained on "Gold
labels" vs on synthetic labels ("LlamBERT"). Plot from
Csanády et al. (2024), as we limit training to 5000 data
points to reduce environmental impact

84.30 with gold labels to 52.72 with 3B labels, and179

this further deteriorates to 43.75 with 7B-generated180

labels. The proportion of unchanged predictions181

(puc) tells a similar story, dropping from 82.04% to182

50% and 30.45% respectively. This pattern holds183

across other datasets, though to varying degrees.184

Even on the simpler IMDB task, where accuracy185

remains competitive, we still see a consistent de-186

cline in prediction stability metrics. The Toxic187

dataset particularly highlights this issue, where us-188

ing 7B-generated labels leads to high variance in189

predictions (puc = 77.49%) despite relatively strong190

accuracy scores. These results suggest that models191

trained on synthetic labels not only underperform192

but also make less consistent predictions across193

different training runs.194

3.1 Theoretical Interpretation195

Framework Denote the true data generating pro-196

cess of text and label pair as the joint distribution197

P (Y,X), where Y is label/class, and X is input198

text. The supervised text classifier is trained to es-199

timate the conditional distribution P (Y |X) from200

i.i.d. sample DP = {(yi, xi)Ni=1} by minimizing201

cross-entropy loss:202

LCE(θ,DP ) = − 1

N

N∑
i=1

log P̂ (yi|xi; θ)203

However, since we are using labels generated from204

LLM, the data we see is actually drawn from 1205

DS = {(yi, xi)Ni=1} ∼ P (X)PS(Y |X)206

̸∼ P (X)P (Y |X)207

1Incidentally, from this formulation, one can see that when
a large pool of unlabeled text is available, using synthetic
labels is theoretically superior than using synthetic text and
label pairs, as it avoids additional LLM approximation error
on the marginal distribution of input text P (X).

where subscript S stands for synthetic. Conse- 208

quently, the expected 2 KL-divergence between 209

true target conditional distribution P (Y |X) and 210

the the learned distribution P̂ (Y |X) can be decom- 211

posed as (Heskes, 1998): 212

Error(P̂ ) = EDS

[
KL

(
P ∥ P̂

)]
= 213

= KL(P∥PS) + EDS

[
KL

(
PS ∥ P̂

)]
214

where the first term represents the irreducible ap- 215

proximation error coming from PS , and the second 216

terms is the estimation error coming from training. 217

Interpretation Crucially, the first term irre- 218

ducible approximation error implies that no amount 219

of synthetic labels can remove the systematic bi- 220

ases LLM annotators introduces, leading to per- 221

formance plateau. The decomposition also helps 222

explain the amplification of instability when train- 223

ing on synthetic labels. In addition to the usual 224

finite sample estimation errors, in regions where 225

PS(Y |X) is particularly off from P (Y |X), even 226

small fluctuations in the synthetic data can lead 227

to larger estimation errors. Essentially, the esti- 228

mation error can be amplified by the underlying 229

approximation error, leading to more variance in 230

performance across different training runs. 231

4 Mitigation Experiments 232

As the theoretical framework suggests, the key 233

driver of performance degradation is the divergence 234

between the true conditional distribution P (Y |X) 235

and the LLM-generated distribution PS(Y |X). In- 236

tuitively, one way to mitigate this error is to filter 237

out unreliable LLM-generated labels and increase 238

the signal to noise ratio to control the error size. 239

For any given input text x, we can try to control 240

the size of error by mixing in true labels to obtain 241

a better conditional distribution 242

PF (y|X = x) = F (x)PS(y|X = x) 243

+(1− F (x))P (y|X = x) 244

where F (x) is the data-dependent filtering function. 245

In principle, one could parameterize F and treat 246

it as a learnable function. However, in our low 247

resource setup, we resort to computationally cheap 248

heuristics. 249

We evaluate mitigation strategies using the 7B 250

LLM annotator with RoBERTa-base, selected for 251

its balance of performance and practical relevance. 252

2expected since P̂ depends on the realization of synthetic
sample DS
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Model Label IMDB Ecommerce Manifestos Toxic
µacc µf1 αK µacc µf1 αK µacc µf1 αK µacc µf1 αK

σacc σf1 puc σacc σf1 puc σacc σf1 puc σacc σf1 puc

RoBERTa-Base

Gold 93.84 93.82 90.6 96.26 96.23 96.69 83.56 79.38 84.30 91.13 75.24 84.08
0.28 0.29 90 0.25 0.22 95.24 0.69 0.54 82.04 0.23 1.01 88.50

3B 93.33 93.31 89.99 66.05 66.62 75.04 66.02 41.91 52.72 86.86 65.18 57.29
0.16 0.16 89.68 3.14 3.69 70.14 0.00 3.68 50 1.74 1.93 47.39

7B 92.95 92.94 87.28 92.74 92.88 79.18 71.51 60.62 43.75 83.89 56.53 68.49
0.20 0.20 86.56 0.81 0.76 69.35 1.30 7.96 30.45 5.31 5.04 77.49

Table 1: Experimental results across different models, label types, and datasets. For each dataset, we report average
accuracy µacc, average macro F1-score µf1, standard deviation of accuracy σacc, and standard deviation of macro
F1 σf1. In addition, we compute Krippendorff’s alpha αK and the proportion of predictions that remain unchanged
across experimental runs puc. All numbers are scaled up by 100 for ease of presentation.

Figure 2: Performance as data point increases

Entropy-Ranking Filtering For each input x,253

we compute the conditional entropy of the LLM’s254

class predictions:255

H(Y |X = x) = −
∑
y∈Y

p(y|x) log p(y|x)256

where p(y|x) is the LLM’s predicted probability for257

class y. Entropy is commonly used as a baseline for258

assessing uncertainty (Huang et al., 2024). We rank259

predictions and replace LLM annotations with gold260

labels if they are in the top α ∈ {5, 25} percent.261

Importantly, we are not using a fixed threshold to262

sidestep temperature scaling, and to account for the263

fact that many out-of-shelf LLMs are poorly cali-264

brated (Desai and Durrett, 2020; Zhu et al., 2023).265

Note that in binary classification, entropy ranking is266

equivalent to logits-ranking, which is the approach267

Wang et al. (2021) took.268

Consistency Ensemble Another simple fix is269

prompt LLM to generate multiple predictions with270

different demonstrations. The idea is that a ro-271

bust prediction should not depend too much on the272

specific examples we provide in the prompt. We273

replace cases where predictions flip with human274

annotations.275

5 Mitigation Results 276

Entropy-based Filtering does not work well. 277

While for IMDB, Ecommerce, Manifestos, entropy- 278

based filtering stabilizes predictions to a certain. 279

On Toxic, on the contrary, it leads to lowers the pro- 280

portion of unchanged predictions upc from 77.49 281

to 56.20. Given that entropy-based filtering is the- 282

oretical more appealing simple alternative simple 283

uncertainty estimation heuristics including logits 284

or log-probabilities, this does not bode well for 285

prospect of having a cheap fix for the instability 286

problem we identify. 287

Consistency Ensemble seems to work, but at a 288

cost. Experiments suggests that consistency en- 289

semble seems to manage to pick up many of LLM 290

annotations that are distorting decision boundary 291

for the classifiers. However, we need to be careful 292

about this approach, however, because it requires 293

multiple inferences on the same data point. For 294

example, with 5 percent of the total unlabeled pool, 295

5-time ensemble means we are effectively perform- 296

ing inference on 25% of the pool, which defeats 297

the purpose of cost saving. 298
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Model Label Type IMDB Ecommerce Manifestos Toxic
µacc µf1 αK µacc µf1 αK µacc µf1 αK µacc µf1 αK

σacc σf1 puc σacc σf1 puc σacc σf1 puc σacc σf1 puc

RoBERTa-Base

Gold 93.84 93.82 90.6 96.26 96.23 96.69 83.56 79.38 84.30 91.13 75.24 84.08
0.28 0.29 90 0.25 0.22 95.24 0.69 0.54 82.04 0.23 1.01 88.50

Entropy 93.28 93.27 89.33 91.79 91.85 83.09 71.06 62.48 59.80 81.56 61.42 68.44
0.32 0.32 89 0.71 0.61 76.89 2.11 2.63 52.82 3.77 3.67 56.20

Ensemble 93.46 83.45 89.43 95.14 95.15 93.87 81.58 77.97 82.55 89.17 74.05 61.48
0.02 0.02 94.72 0.20 0.14 95.54 0.24 0.40 81.51 0.69 0.86 77.20

Table 2: Experimental results across different models, label types, and datasets. For each dataset, we report average
accuracy µacc, average macro F1-score µf1, standard deviation of accuracy σacc, and standard deviation of macro
F1 σf1. In addition, we compute Krippendorff’s alpha αK and the proportion of predictions that remain unchanged
across experimental runs puc. All numbers are scaled up by 100 for ease of presentation.

6 Conclusion299

In this short paper, we identify previously over-300

looked risks in using LLM-generated labels to train301

smaller text classifiers: performance drops, un-302

stable predictions, and early plateaus in learning.303

These problems are worse for complex tasks and304

minority classes, which can amplify existing biases305

(Gallegos et al., 2024). While we tested some fixes306

like filtering and ensembles, they only partially307

address these problems. As Chen et al. (2024)308

warns about rushing to adopt LLMs without proper309

scrutiny, our results provide concrete evidence of310

risks in this specific use case. While using LLM-311

generated labels might work for simple tasks, we312

urge caution in critical applications.313

7 Limitations and Ethical Considerations 314

Limitations. One clear limitation is that our work 315

does not offer a comprehensive solution to the 316

problem we identified. While we explored a few 317

heuristic mitigation strategies, we did not investi- 318

gate more sophisticated approaches. For instance, 319

our theoretical discussion suggests that using the 320

embeddings as inputs to a simple ridge regression 321

on a small validation set could help predict where 322

the LLM is likely to make mistakes, thereby guid- 323

ing targeted improvements through higher-quality 324

annotations. However, given the scope of this short 325

paper, we leave more in depth exploration of best 326

strategies to LLM-generated labels to text classifi- 327

cation pipeline to future work. 328

A second limitation stems from the rapid evo- 329

lution of foundation models. As state-of-the-art 330

models become increasingly capable of approxi- 331

mating the conditional distribution P (Y |X) arbi- 332

trarily well, our approach may become less relevant. 333

Nonetheless, we welcome such advancements as 334

they contribute positively to the field. 335

Finally, our theoretical analysis touches on the 336

impact of approximation error, yet it lacks a rig- 337

orous exposition of how this error influences the 338

variance and convergence rates of our estimates. 339

Addressing this gap remains an important avenue 340

for future research. 341

Ethical Considerations. We do not foresee sig- 342

nificant ethical risks associated with our work. On 343

the contrary, our paper cautions against the un- 344

critical adoption of pipelines that utilize LLM- 345

generated labels to fine-tune BERT-like models for 346

classification. 347

Use of AI We acknowledge the use of artificial 348

intelligence tools to assist with code debugging and 349

prose refinement throughout this work. 350
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A Dataset Descriptions 545

IMDB The Stanford Large Movie Review 546

Dataset (Maas et al., 2011), IMDB for short, needs 547

no introduction among NLP practitioners. 548

E-commerce (Gautam, 2019) The Ecommerce 549

dataset contains 50,425 product listings scraped 550

from Indian ecommerce platforms, consisting of 551

product titles and descriptions. Each item is catego- 552

rized into one of four classes: Electronics, House- 553

hold, Books, or Clothing and Accessories. The 554

dataset is slightly imbalanced across these four 555

classes, with each product represented by its textual 556

description. 557

Manifestos (Müller, 2020) The Manifesto 558

Project dataset comprises annotated political 559

texts, including party election manifestos from 560

50+ countries, labeled with policy positions and 561

topics. We focus on the English-language subset, 562

which includes over 4,000 documents annotated at 563

the sentence level. Each sentence is categorized 564

into one of 56 policy areas (e.g., "Environment," 565

"Education"). The dataset is widely used for 566

political text analysis and multi-label classification 567

tasks. We preprocess the text to remove metadata 568
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and retain only sentences with unambiguous policy569

labels.570

Toxic speech (Davidson et al., 2017) This dataset571

contains 24,802 tweets annotated via crowd-572

sourcing into three categories: hate speech, offen-573

sive language, or neither. Tweets were collected574

using a crowd-sourced lexicon of hate speech key-575

words, and annotations emphasize distinguishing576

hate speech (targeted attacks on protected groups)577

from general offensiveness. The dataset is im-578

balanced, with most tweets labeled as offensive.579

Racist and homophobic content is more reliably580

classified as hate speech, while sexist remarks are581

often misclassified as merely offensive. We use this582

dataset to evaluate nuanced hate speech detection,583

focusing on precision-recall trade-offs. To reduce584

environmental impacts, we limit the number of data585

points for train to up to 5000 for all datasets and586

shrink the size of test datasets with <= 2000 by587

randomly drawing from existing test sets.588

B Fine-tuning Details589

We employ Huggingface’s pre-trained weights for590

both BERT (Devlin et al., 2019) and RoBERTa (Liu591

et al., 2019) as provided in the Transformers library592

(Wolf et al., 2020). We conduct full fine-tuning593

of the pre-trained language models following Sun594

et al. (2020), without freezing any pre-trained lay-595

ers. The classification head consists of a dropout596

layer (set at the default value 0.1) followed by a lin-597

ear layer that maps the [CLS] token representation598

to dimension of the target label space.599

While extensive hyperparameter tuning could600

potentially yield better performance, we prioritize601

consistent experimental conditions across datasets602

to isolate the effects of synthetic labels on perfor-603

mance stability. As a result, our baseline perfor-604

mance on gold-label fine-tuning may be slightly605

below state-of-the-art, but provides a fair founda-606

tion for comparative analysis.607

Training runs for 3 epochs with a batch size of608

16 for training and 32 for evaluation. We use the609

AdamW optimizer with a learning rate of 2e-5610

and weight decay of 0.01. A linear learning rate611

scheduler with a warmup ratio of 0.05 is applied.612

The best checkpoint is selected based on validation613

F1 score, with a maximum of 2 checkpoints614

saved during training to conserve storage. All615

experiments use mixed-precision training (FP16)616

and are conducted on a single NVIDIA RTX 8000617

GPU.618

619

C LLM Annotation Details 620

We utilize vLLM (Kwon et al., 2023) for improved 621

memory efficiency and to better simulate a produc- 622

tion environment. In addition, guided decoding 623

(Willard and Louf, 2023) is imposed to ensure that 624

the outputs follow a consistent format. In particu- 625

lar, the model is constrained to generate only two 626

tokens: the first token is the predicted class token 627

(with labels mapped to integers) and the second 628

token is the end-of-sequence (<EOS>) marker. The 629

annotation pipeline uses a structured prompt tem- 630

plate that puts together a task description, label 631

description, demonstrations (randomly drawn from 632

training datasets), and input text as follows: 633

### Instruction ### 634

{task description} 635

Respond with only the label name, nothing else. 636

### Available Labels ### 637

{label description} 638

### Examples ### 639

{demonstrations} 640

### Input ### 641

Text to classify: {input_text} 642

### Output ### 643

Label: 644
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Dataset Task Description Label Mapping
IMDB You are an AI assistant specializing in sentiment analysis of

movie reviews. You are going to help classify movie reviews as
positive or negative.

{"0": “negative”, "1": “positive”}

Ecommerce You are an AI assistant and you are very good at doing ecom-
merce products classification. You are going to help a customer
to classify the products on the ecommerce website.

{"0": “books”, "1": “clothing & acces-
sories”, "2": “electronics”, "3": “house-
hold”}

Manifestos You are an AI assistant specializing in classifying the temporal
alignment of political party manifestos.You are going to help
classify political party manifestos as about the future, the present,
or the past.

{"0": “present”, "1": “future”, "2":
“past”}

Toxic You are an AI assistant specializing in detecting hate speech and
offensive language. You are going to help classify tweets as hate
speech, offensive language, or neither.

{"0": “hate speech”, "1": “offensive lan-
guage”, "2": “neither”}

Table 3: Task specifications for various datasets.
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